Issue 32, 2024

Spurious proton transfer in hydrogen bonded dimers

Abstract

In some hydrogen bonded systems, the proton may translocate along the hydrogen bond (hb) upon geometry optimization with electronic structure methods like density functional theory (DFT). Such proton transfer (pt) events, however, may be spurious. In this work, spurious pt events are investigated in a set of hydrogen bonded dimers formed with molecules HXN, where X stands for C, Si, Ge and Sn. It is found that standard approximations to the electronic exchange and correlation (xc) functional either predict spurious pt events or too strong hbs in all the (HXN)2 dimers except the (HCN)2 one. The latter result is revealed by comparing DFT calculations against wave function methods. Such spurious pt events may be avoided by fine-tuning the percentage of exact exchange (ex) in hybrid xc-functionals. It is shown that the minimum amount of ex to avoid a spurious pt event ranged from 8% to 90%, depending on the system, basis set and xc-functional approximation used. However, these fine-tuned xc-functionals inadequately describe the hb in the (HXN)2 dimers. Moreover, it is determined that the spurious pt event originates from a wrong description of the isolated HXN molecules by xc-functionals that do not include ex or a small amount of it. Therefore, it is argued that one can determine if a pt event is spurious by analyzing the geometry and electronic structure of the isolated molecule.

Graphical abstract: Spurious proton transfer in hydrogen bonded dimers

Supplementary files

Article information

Article type
Paper
Submitted
01 Mar 2024
Accepted
19 Jul 2024
First published
22 Jul 2024
This article is Open Access
Creative Commons BY-NC license

Phys. Chem. Chem. Phys., 2024,26, 21468-21475

Spurious proton transfer in hydrogen bonded dimers

J. Bautista-Renedo and J. Ireta, Phys. Chem. Chem. Phys., 2024, 26, 21468 DOI: 10.1039/D4CP00907J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements