Issue 13, 2024

Bismuth-oxide nanoparticles: study in a beam and as deposited

Abstract

Bi2O3 is a promising material for solid-oxide fuel cells (SOFC) due to the high ionic conductivity of some phases. The largest value is reached for its δ-phase, but it is normally stable at temperatures too high for SOFC operation, while nanostructured oxide is believed to have more suitable stabilization temperature. However, to manufacture such a material with a controlled chemical composition is a challenging task. In this work, we investigated the fabrication of nanostructured Bi2O3 films formed by deposition of free Bi-oxide nanoparticles created in situ. The particle-production method was based on reactive sputtering and vapour aggregation. Depending on the fabrication conditions, the nanoparticles contained either a combination of Bi–metal and Bi-oxide, or only Bi-oxide. Prior to deposition, the free particles were probed in the beam – by synchrotron-based photoelectron spectroscopy (PES), which allowed assessing their composition “on the-fly”. The nanoparticle films obtained after deposition were studied by PES, scanning electron microscopy, transmission electron microscopy, and electron diffraction. The films' chemical composition, grain dimensions, and crystal structure were probed. Our analysis suggests that our method produced Bi-oxide films in more than one polymorph of Bi2O3.

Graphical abstract: Bismuth-oxide nanoparticles: study in a beam and as deposited

Supplementary files

Article information

Article type
Paper
Submitted
26 Jan 2024
Accepted
21 Feb 2024
First published
05 Mar 2024
This article is Open Access
Creative Commons BY license

Phys. Chem. Chem. Phys., 2024,26, 10369-10381

Bismuth-oxide nanoparticles: study in a beam and as deposited

M.-H. Mikkelä, M. Marnauza, C. J. D. Hetherington, R. Wallenberg, E. Mårsell, Y. Liu, A. Mikkelsen, O. Björneholm, G. Öhrwall and M. Tchaplyguine, Phys. Chem. Chem. Phys., 2024, 26, 10369 DOI: 10.1039/D4CP00376D

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements