Issue 3, 2024

Composition-dependent photoluminescence in nanocrystalline La2Hf2−xZrxO7:Eu phosphor: role of chemical twin Zr/Hf environments around a luminescent center

Abstract

Based on chemical intuition, linear trends are anticipated in Eu3+ photoluminescence performance inside a pyrochlore matrix of the chemical twins, Hf and Zr, owing to probable geometrical and chemical similarity around the luminescent center. The present work reports the drastically fluctuating result of doping Eu3+ in nanocrystalline pyrochlore, La2Hf2−xZrxO7 (LHZO), matrix on composition variation; the variation is counter to the anticipation-based chemical brotherhood of Hf and Zr. Zirconium-enriched samples of LHZO improve asymmetry around Eu3+ ion leading to enhanced photoluminescence quantum yield (PLQY). The samples with compositions 0.7Hf and 1.3Zr depict the lowest non-radiative channels with the highest theoretically calculated PLQY of ∼71% and excellent thermal stability (∼91%). Synergistic experimental and theoretical analysis reveals that Eu does not unbiasedly occupy La-sites in the pyrochlore LHZO matrix towards chemical twins of Hf and Zr; rather, it energetically prefers to occupy Zr-rich vicinal sites. When the composition with Zr is in the low-medium range, Eu has a higher probability of occupying Zr-rich vicinal sites depicting higher lifetime and PLQY. When Zr-content goes beyond 70–80%, the other site occupancies start contributing leading to a reduction in both lifetime and quantum yield. This work paves a great strategy and provides a futuristic potential to utilize europium luminescence in separating chemically close Hf–Zr for various technological applications.

Graphical abstract: Composition-dependent photoluminescence in nanocrystalline La2Hf2−xZrxO7:Eu phosphor: role of chemical twin Zr/Hf environments around a luminescent center

Supplementary files

Article information

Article type
Paper
Submitted
10 Nov 2023
Accepted
12 Dec 2023
First published
13 Dec 2023

Phys. Chem. Chem. Phys., 2024,26, 1749-1761

Composition-dependent photoluminescence in nanocrystalline La2Hf2−xZrxO7:Eu phosphor: role of chemical twin Zr/Hf environments around a luminescent center

S. K. Gupta, S. Nigam and Y. Mao, Phys. Chem. Chem. Phys., 2024, 26, 1749 DOI: 10.1039/D3CP05454C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements