Enhanced thermoluminescence of sodium-doped lithium–magnesium fluorophosphate Li9Mg3[PO4]4F3†
Abstract
Lithium–magnesium fluorophosphate with the formula Li9Mg3[PO4]4F3 has recently been proposed as a new thermoluminescent material capable of storing ionizing radiation energy and emitting photons after additional thermal stimulation. Pure and sodium-doped fluorophosphates were obtained by microwave-assisted synthesis. Using X-ray and neutron diffraction methods, it was shown that sodium occupies only one of the three nonequivalent lithium positions. This conclusion was confirmed by a MAS NMR study and ab initio calculations. A significant increase in the thermoluminescence intensity of sodium-containing fluorophosphates in comparison to the undoped compound was found. Analysis of the kinetic parameters obtained from glow curves showed that they are similar for the undoped and sodium-doped samples. This indicates that the addition of sodium does not result in the emergence of novel types of traps, but rather in a change in their number. The effect of sodium on the formation of intrinsic defects, which can be responsible for the enhanced thermoluminescence, is considered using ab initio modelling.

Please wait while we load your content...