Radical cascade silylation/cyclization of 1,7-dienes to access silyl-substituted benzo[b]azepin-2-ones†
Abstract
A novel silyl radical-induced cascade silylation/cyclization of 1,7-dienes has been realized employing readily available hydrosilanes as a silicon source and Cu(I) salt as a catalyst. This protocol introduces diverse silicon fragments into a challenging 7-membered ring structure and provides an efficient approach to a wide array of biologically important silyl-substituted benzo[b]azepin-2-ones. Several control experiments suggest that the reaction undergoes a free radical process. The gram-scale synthesis and late-stage transformations further demonstrate the scalability and applicability of the reaction in organic synthesis.