A DNA rotary nanodevice operated by enzyme-initiated strand resetting†
Abstract
DNA nanostructures that respond to external stimuli have found applications in several areas such as biosensing, drug delivery and molecular computation. The use of different types of stimuli in a single operation provides another layer of control for the reconfiguration of nucleic acid nanostructures. This work demonstrates the use of a ribonuclease to “unset” a nucleic acid nanodevice based on the paranemic crossover (PX) DNA and specific DNA inputs to “reset” the structure into a juxtaposed DNA (JX2) configuration, resulting in a 180° rotation of the helical domains. Such operations would be useful in translational applications where DNA nanostructures can be designed to reconfigure on the basis of more than one stimulus.