Issue 2, 2024

Oxygen vacancy healing boosts the piezoelectricity of bone scaffolds

Abstract

Although barium titanate (BaTiO3) presented tremendous potential in achieving self-powered stimulation to accelerate bone repair, pervasive oxygen vacancies restricted the full play of its piezoelectric performance. Herein, BaTiO3-GO nanoparticles were synthesized by the in situ growth of BaTiO3 on graphene oxide (GO), and subsequently introduced into poly-L-lactic acid (PLLA) powders to prepare PLLA/BaTiO3-GO scaffolds by laser additive manufacturing. During the synthesis process, C[double bond, length as m-dash]O and C–OH in GO would respectively undergo cleavage and dehydrogenation at high temperature to form negatively charged oxygen groups, which were expected to occupy positively charged oxygen vacancies in BaTiO3 and thereby inhibit the formation of oxygen vacancies. Moreover, GO could be partially reduced to reduced graphene oxide, which could act as a conductive phase to facilitate polarization charge transfer, thus further improving the piezoelectric performance. The results showed that the oxygen peak at the specific electron binding energy in O 1s declined from 54.4% to 14.6% and the Ti3+ peak that was positively correlated with oxygen vacancies apparently weakened for BaTiO3-GO, illustrating that the introduced GO significantly decreased the oxygen vacancy. As a consequence, the piezoelectric current of PLLA/BaTiO3-GO increased from 80 to 147.3 nA compared with that of PLLA/BaTiO3. The enhanced piezoelectric current effectively accelerated cell differentiation by upregulating alkaline phosphatase expression, calcium salt deposition and calcium influx. This work provides a novel insight for the design of self-powered stimulation scaffolds for bone regeneration.

Graphical abstract: Oxygen vacancy healing boosts the piezoelectricity of bone scaffolds

Supplementary files

Article information

Article type
Paper
Submitted
03 Aug 2023
Accepted
04 Dec 2023
First published
04 Dec 2023

Biomater. Sci., 2024,12, 495-506

Oxygen vacancy healing boosts the piezoelectricity of bone scaffolds

F. Qi, H. Li, X. Gao, Y. Wang, H. Qian, W. Li, S. Liu, H. Zhou, S. Peng and C. Shuai, Biomater. Sci., 2024, 12, 495 DOI: 10.1039/D3BM01283B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements