Laser-Induced Graphene/Gold Nanoparticle Hybrid Sensor for Enhanced Electrochemical Detection of Paracetamol
Abstract
This research presents a highly sensitive and selective electrochemical sensor for detecting paracetamol. The sensor is created using laser direct-writing on a flexible PI substrate to form LIG electrodes. Gold nanoparticles (AuNPs) are then synthesized on the working electrode through secondary laser reduction, resulting in an AuNPs/LIG composite. This combination enhances the sensor's electrochemical activity, electron transfer rate, and adsorption capacity. The sensor exhibits a linear response to paracetamol concentrations with a detection limit of 0.086 μM. Testing on Tylenol tablets and tap water showed good recovery rates. The sensor displays strong anti-interference, reproducibility, and stability, making it a promising tool for effective paracetamol monitoring in real-world situations.