Hairpin self-assembly powered by exonuclease III for highly sensitive and cross-validated miRNA-155 detection

Abstract

Cancer is one of the most important causes of human death and poses a serious threat to human health. As a cancer biomarker, microRNA-155 (miRNA-155) is highly expressed in various types of cancer tissues and is involved in the proliferation of tumor cells. Therefore, developing a miRNA-155 detection technology with high specificity and sensitivity is of great significance for the early detection, accurate treatment and prognostic evaluation of tumors. Here, we developed a fluorescence detection method using exonuclease III-assisted target cycling and catalytic hairpin assembly (CHA) as a signal amplification technique. This study developed a biosensor for the detection of miRNA-155, utilizing a DNA hairpin (Hp) for target recognition and generating double-stranded DNA (dual-Hp-T). The 3′ flat end of the double-stranded DNA can be cleaved by exonuclease III to achieve the target cycle, and a large amount of single-stranded DNA (fuel) can trigger CHA to achieve signal amplification. Simultaneously, the fluorescence resonance energy transfer (FRET) of signal probes with different fluorescence labels on H1 and H2 ends occurs with the CHA reaction. The two fluorescence signals obtained can be used to cross-validate the experimental results. The biosensor exhibits excellent performance of high recovery, high sensitivity and high operability, which can achieve the specific detection of miRNA-155 with a detection limit as low as 8.3 pM. Additionally, the detection efficacy in a human serum environment is also highly satisfactory. This technology provides strong technical support for the development of nucleic acid probes and the diagnosis and treatment of cancer, demonstrating significant practical application value.

Graphical abstract: Hairpin self-assembly powered by exonuclease III for highly sensitive and cross-validated miRNA-155 detection

Supplementary files

Article information

Article type
Paper
Submitted
18 Jun 2024
Accepted
30 Jul 2024
First published
02 Aug 2024

Anal. Methods, 2024, Advance Article

Hairpin self-assembly powered by exonuclease III for highly sensitive and cross-validated miRNA-155 detection

J. Ji, J. Xu, S. Wang, Q. Wang and H. Li, Anal. Methods, 2024, Advance Article , DOI: 10.1039/D4AY01135J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements