Issue 11, 2024

A deep learning method for multi-task intelligent detection of oral cancer based on optical fiber Raman spectroscopy

Abstract

In the fight against oral cancer, innovative methods like Raman spectroscopy and deep learning have become powerful tools, particularly in integral tasks encompassing tumor staging, lymph node staging, and histological grading. These aspects are essential for the development of effective treatment strategies and prognostic assessment. However, it is important to note that most research so far has focused on solutions to one of these problems and has not taken full advantage of the potential wealth of information in the data. To compensate for this shortfall, we conceived a method that combines Raman spectroscopy with deep learning for simultaneous processing of multiple classification tasks, including tumor staging, lymph node staging, and histological grading. To achieve this innovative approach, we collected 1750 Raman spectra from 70 tissue samples, including normal and cancerous tissue samples from 35 patients with oral cancer. In addition, we used a deep neural network architecture to design four distinct multi-task network (MTN) models for intelligent oral cancer diagnosis, named MTN-Alexnet, MTN-Googlenet, MTN-Resnet50, and MTN-Transformer. To determine their effectiveness, we compared these multitask models to each other and to single-task models and traditional machine learning methods. The preliminary experimental results show that our multi-task network model has good performance, among which MTN-Transformer performs best. Specifically, MTN-Transformer has an accuracy of 81.5%, a precision of 82.1%, a sensitivity of 80.2%, and an F1_score of 81.1% in terms of tumor staging. In the field of lymph node staging, the accuracy, precision, sensitivity, and F1_score of MTN-Transformer are 81.3%, 83.0%, 80.1%, and 81.5% respectively. Similarly, for the histological grading classification tasks, the accuracy was 83.0%, the precision 84.3%, the sensitivity 76.7%, and the F1_score 80.2%. This code is available at https://github.com/ISCLab-Bistu/MultiTask-OralRamanSystem.

Graphical abstract: A deep learning method for multi-task intelligent detection of oral cancer based on optical fiber Raman spectroscopy

Supplementary files

Article information

Article type
Paper
Submitted
18 Dec 2023
Accepted
15 Feb 2024
First published
15 Feb 2024

Anal. Methods, 2024,16, 1659-1673

A deep learning method for multi-task intelligent detection of oral cancer based on optical fiber Raman spectroscopy

L. Li, M. Yu, X. Li, X. Ma, L. Zhu and T. Zhang, Anal. Methods, 2024, 16, 1659 DOI: 10.1039/D3AY02250A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements