Issue 15, 2024

Fe3+-induced luminescence quenching in carbon dots – mechanism unveiled

Abstract

Carbon dot (CD)-based fluorimetric sensors have attracted immense attention for the detection of metal ions. Among the available works in this direction, more than 70% of the studies reported the detection of Fe3+ through luminescence quenching. Ferric ions are significant species from environmental and biological point of view. Excited-state electron transfer from carbon dots to ferric ions is suggested as the reason for the luminescence quenching. However, to date, no solid proof was provided to demonstrate this electron transfer process. Herein, N-doped blue luminescent carbon dots prepared via hydrothermal carbonization are used to demonstrate the exact mechanism operating in the above-mentioned detection strategy. The carbon dots possessed an average size of 4.9 nm, and exhibited good aqueous solubility as well as an excitation wavelength-dependent emission. Fe3+-mediated luminescence quenching was quantitatively achieved at the micromolar level, with a detection limit of 1.426 μM. The CD-mediated reduction of ferric ions is confirmed by spectral analysis. Fe3+-induced luminescence quenching was partially restored in the presence of ascorbic acid, enabling the sub-micromolar level monitoring of this analyte, with the lowest detection amount of 276 nM. Turnbull's blue method is adopted for confirming the reducing role of ascorbic acid, which eventually increased the luminescence of the system, evoking a turn-on response.

Graphical abstract: Fe3+-induced luminescence quenching in carbon dots – mechanism unveiled

Supplementary files

Article information

Article type
Paper
Submitted
09 Dec 2023
Accepted
18 Mar 2024
First published
20 Mar 2024

Anal. Methods, 2024,16, 2349-2358

Fe3+-induced luminescence quenching in carbon dots – mechanism unveiled

V. Raveendran P.T., A. C. and R. Neeroli Kizhakayil, Anal. Methods, 2024, 16, 2349 DOI: 10.1039/D3AY02202A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements