Issue 25, 2023

Crystal structure and magnetic properties of EuZrO3 solid solutions

Abstract

It is theoretically proposed that perovskite-type EuZrO3 becomes a ferromagnet when the lattice volume is increased or the structure is changed from orthorhombic to cubic in contrast to the fact that the stable phase of EuZrO3, the structure of which is orthorhombic, is antiferromagnetic. To investigate the change in crystal structure and magnetic properties of EuZrO3 with the variation of lattice volume, we have synthesized polycrystals of solid solutions AxEu1−xZrO3 (A = Ba, Ca, Sr); Eu2+ is substituted by group 2 elements with different ionic radius to realize the change in lattice volume and crystal structure of EuZrO3. The stable magnetic structure of EuZrO3 solid solutions is tuned with the change of lattice volume. In particular, the ferromagnetic state is stabilized by the increase in lattice volume, which experimentally verifies the prediction by the first-principles calculations. Furthermore, this phenomenon is explainable in terms of the competition between ferromagnetic and antiferromagnetic interactions that is highly related to the volume variation and the rotation of ZrO6 octahedron. The present results indicate that the magnetic structure can be systematically tuned by controlling the chemical pressure in solid solutions.

Graphical abstract: Crystal structure and magnetic properties of EuZrO3 solid solutions

Supplementary files

Article information

Article type
Paper
Submitted
11 Mar 2023
Accepted
16 May 2023
First published
24 May 2023
This article is Open Access
Creative Commons BY-NC license

J. Mater. Chem. C, 2023,11, 8383-8392

Crystal structure and magnetic properties of EuZrO3 solid solutions

S. Li, S. Konishi, T. Kito, K. Fujita and K. Tanaka, J. Mater. Chem. C, 2023, 11, 8383 DOI: 10.1039/D3TC00888F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements