Issue 1, 2023

Understanding kinetically controlled spin transitions in bistable spin crossover materials

Abstract

Spin crossover (SCO) materials can be kinetically trapped in a photo-excited metastable state in the so-called LIESST and reverse-LIESST processes. Under these conditions, SCO molecules are excellent light-responsive bistable molecular switches. However, above a certain temperature (TLIESST and Tr-LIESST, respectively), the relaxation to the ground state becomes favorable and their bistability is suppressed. Understanding the mechanism of these processes, and being able to predict their kinetics, is key to designing SCO switches that are able to operate at room temperature. Herein, we reveal the mechanism of thermally induced spin transitions of the [FeII(1-bpp)2]2+ SCO complex, and we predict its TLIESST (as well as its T1/2) with unprecedented accuracy. This is possible here thanks to the efficient reconstruction of the low-spin (LS, S = 0), high-spin (HS, S = 2) and intermediate (IS, S = 1) state Free energy surfaces (FESs) with ab initio and machine-learning methods, and the characterization of the minimum energy crossing points (MECPs) connecting those FESs. This approach paves the way for the systematic investigation of molecular features determining the mechanism of kinetically controlled transitions in SCO materials, as well as their temperature-dependent rate constants.

Graphical abstract: Understanding kinetically controlled spin transitions in bistable spin crossover materials

Supplementary files

Article information

Article type
Paper
Submitted
07 Oct 2022
Accepted
11 Nov 2022
First published
09 Dec 2022
This article is Open Access
Creative Commons BY-NC license

J. Mater. Chem. C, 2023,11, 235-243

Understanding kinetically controlled spin transitions in bistable spin crossover materials

S. Vela, M. Fumanal and C. Sousa, J. Mater. Chem. C, 2023, 11, 235 DOI: 10.1039/D2TC04266E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements