Issue 37, 2023

An ultra pH-responsive peptide nanocarrier for cancer gene therapy

Abstract

The tumor microenvironment is a very complex and dynamic ecosystem. Although a variety of pH-responsive peptides have been reported to deliver nucleic acid drugs for cancer treatment, these responses typically only target the acidic microenvironment of the tumor or the lysosome, and the carrier suffers from issues such as low transfection efficiency and poor lysosomal escape within the cell. To address this problem, we have developed an ultra pH-responsive peptide nanocarrier that can efficiently deliver siRNA, pDNA, and mRNA into cancer cells by performing progressive dynamic assembly in response to pH changes in the acidic tumor microenvironment (pH 6.5–6.8) and the acidic intracellular lysosomal environment (pH 5.0–6.0). The maximum transfection efficiency was 87.1% for pDNA and 74.9% for mRNA, which is higher than that of peptide-based nanocarrier reported to date. In addition, the targeting sequence on the surface allows the peptide@siRNA complex to efficiently enter cancer cells, causing 96% of cancer cell mortality. The carrier has high biocompatibility and low cytotoxicity, making it highly promising for application in immunotherapy and gene therapy of tumors.

Graphical abstract: An ultra pH-responsive peptide nanocarrier for cancer gene therapy

Supplementary files

Article information

Article type
Paper
Submitted
08 Jun 2023
Accepted
15 Aug 2023
First published
13 Sep 2023

J. Mater. Chem. B, 2023,11, 8974-8984

An ultra pH-responsive peptide nanocarrier for cancer gene therapy

Z. Wang, X. Zhang, M. Han, X. Jiao, J. Zhou, X. Wang, R. Su, Y. Wang and W. Qi, J. Mater. Chem. B, 2023, 11, 8974 DOI: 10.1039/D3TB01311A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements