Issue 18, 2023

Functional injectable hydrogel with spatiotemporal sequential release for recruitment of endogenous stem cells and in situ cartilage regeneration

Abstract

Articular cartilage is refractory to self-healing due to the absence of vascular, nervous, and lymphatic systems, and its repair remains a clinical challenge. Tissue regeneration through in situ recruitment of stem cells via cell-free scaffolds is a promising alternative strategy. Herein, a kind of functional injectable hydrogel system (Col-Apt@KGN MPs), which is a collagen-based and microsphere-embedded cell-free scaffold, was designed to achieve spatiotemporal regulation of endogenous mesenchymal stem cells (MSCs) recruitment and their chondrogenic differentiation by respective release of aptamer 19S (Apt19S) and kartogenin (KGN). In vitro results confirmed that the Col-Apt@KGN MPs hydrogel had sequential release characteristics. Apt19S was rapidly released from the hydrogel within 6 days, while KGN was slowly released for 33 days via the degradation of poly(lactic-co-glycolic acid) (PLGA) microspheres. When cultured with MSCs, the Col-Apt@KGN MPs hydrogel supported the adhesion, proliferation, and chondrogenic differentiation of MSCs. In vivo results indicated that the Col-Apt@KGN MPs hydrogel effectively promoted the recruitment of endogenous MSCs in a rabbit full-thickness cartilage defect model; furthermore, the Col-Apt@KGN MPs hydrogel enhanced the secretion of cartilage specific extracellular matrix and achieved the reconstruction of subchondral bone. This study demonstrates that the Col-Apt@KGN MPs hydrogel possesses great potential in recruitment of endogenous stem cells and cartilage tissue regeneration.

Graphical abstract: Functional injectable hydrogel with spatiotemporal sequential release for recruitment of endogenous stem cells and in situ cartilage regeneration

Supplementary files

Article information

Article type
Paper
Submitted
17 Jan 2023
Accepted
02 Apr 2023
First published
20 Apr 2023

J. Mater. Chem. B, 2023,11, 4050-4064

Functional injectable hydrogel with spatiotemporal sequential release for recruitment of endogenous stem cells and in situ cartilage regeneration

W. Dai, Q. Liu, S. Li, Y. Gao, C. Feng, L. Guo, Y. Xiao, H. Lin, Y. Fan and X. Zhang, J. Mater. Chem. B, 2023, 11, 4050 DOI: 10.1039/D3TB00105A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements