Issue 2, 2023

Synthetic strain-stiffening hydrogels towards mechanical adaptability

Abstract

Living organisms are made of wet, soft tissues. However, there is only one candidate to simultaneously replicate the mechanical and composition features of load-bearing tissues, that is, strain-stiffening hydrogels. The conventional mechanical match design principle is mostly limited to stiffness matching. However, this strategy cannot sufficiently and necessarily lead to mechanical matching over the whole physiologic deformation period for tissues and damages the tissues over time. In this review, we aim to provide a comprehensive summary of the reported synthetic strain-stiffening hydrogels and particularly focus on the relationship between their structure and performance. Initially, we present a brief introduction on the significance of strain-stiffening hydrogels in mimicking the mechanics of tissues, and then we discuss the qualitative evaluation of the strain-stiffening behaviors to guide the design of materials towards mimicking soft tissue. After distinguishing the mechanical testing methods, we focus on the methods for the preparation of typical strain-stiffening hydrogels based on categories, such as network without strand entanglement, semiflexible network, and anisotropic networks. Subsequently, we discuss the structural evolution of strain-stiffening hydrogels. We hope that this review will serve as an updated introduction and reference for researchers who are interested in exploring strain-stiffening hydrogels as tissue-mimics for addressing the societal needs at various frontiers.

Graphical abstract: Synthetic strain-stiffening hydrogels towards mechanical adaptability

Article information

Article type
Review Article
Submitted
16 Aug 2022
Accepted
25 Nov 2022
First published
28 Nov 2022

J. Mater. Chem. B, 2023,11, 221-243

Synthetic strain-stiffening hydrogels towards mechanical adaptability

J. Xu, Y. Jiang and L. Gao, J. Mater. Chem. B, 2023, 11, 221 DOI: 10.1039/D2TB01743A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements