Issue 45, 2023

A single-phase gadolinium-doped ceria cathode for highly efficient CO2 electrolysis

Abstract

High-temperature solid-oxide CO2 electrolysers enable high-efficiency conversion of electrical energy to valuable fuels and chemicals and as such facilitate a sustainable-energy technology. Conventional cermet-based fuel electrodes used in such solid-oxide cells (SOCs) like nickel–yttria-stabilized zirconia (Ni–YSZ) suffer from morphological degradation and destructive carbon deposition. In recent years, there has been an increasing interest in employing single-phase ceria-based fuel electrodes, which are known to exhibit excellent carbon deposition resistance. Under sufficiently reducing conditions, doped ceria (substituted with trivalent cations such as samarium or gadolinium to generate mobile oxygen vacancies) becomes a mixed ionic–electronic conductor, showing appreciable electronic conductivity. Here, we show for the first time stable high performance in CO2 electrolysis using a ceria-based SOC. The single full cell incorporating a 10 mol% gadolinium-doped ceria (GCO) fuel electrode delivers a current density as high as 1.51 A cm−2 at 800 °C during pure CO2 electrolysis, which is the best electrode performance reported to date among all-ceramic cathode materials. We demonstrate that the electrode performance in CO2 electrolysis is linked with the electronic conductivity, and hence, with the electronic charge carrier concentration in GCO. The results of the present work pave the way for development of robust, nickel-free SOCs for direct CO2 electrolysis.

Graphical abstract: A single-phase gadolinium-doped ceria cathode for highly efficient CO2 electrolysis

Supplementary files

Article information

Article type
Paper
Submitted
06 Jul 2023
Accepted
03 Nov 2023
First published
03 Nov 2023
This article is Open Access
Creative Commons BY license

J. Mater. Chem. A, 2023,11, 25020-25030

A single-phase gadolinium-doped ceria cathode for highly efficient CO2 electrolysis

A. Shaur, M. Drazkowski, S. Zhu, B. Boukamp and H. J. M. Bouwmeester, J. Mater. Chem. A, 2023, 11, 25020 DOI: 10.1039/D3TA03977C

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements