Issue 29, 2023

Hierarchical Co/MoNi heterostructure grown on monocrystalline CoNiMoOx nanorods with robust bifunctionality for hydrazine oxidation-assisted energy-saving hydrogen evolution

Abstract

Replacing thermodynamically unfavorable water oxidation by hydrazine oxidation reaction to accomplish energy-saving hydrogen evolution while efficiently disposing toxic hydrazine-rich wastewater is generally considered as an advantageous strategy. However, the unsatisfactory high voltage of the cell system owing to the lack of the active bifunctional catalysts and insufficient mechanistic understanding of hydrazine oxidation severely limit its development. Hence, we demonstrate the bifunctional metallic hierarchical Co/MoNi heterostructure grown on oxygen vacancy-modified monocrystalline CoNiMoOx nanorods for accelerating both hydrazine oxidation (−23 mV at 100 mA cm−2) and seawater reduction (−79 mV at 100 mA cm−2). Impressively, such catalyst-assembled hybrid seawater electrolyzer demands an electricity consumption of only 0.143 kW h m−3 H2 at 100 mA cm−2 and cuts 90% power expense compared to traditional alkaline water splitting electrolyzer. DFT calculations reveal that the boosted bifunctional activity is attributed to the construction of Co/MoNi heterostructure that promotes the reaction kinetics of water dissociation, hydrogen adsorption, and stepwise dehydrogenation. These findings help to fundamentally explore the catalytic mechanism of hierarchical metallic heterostructure and highlight the rational design of fast-kinetic bifunctional catalysts for realizing large-scale energy-saving hydrogen evolution and simultaneous fast disposal of hydrazine-rich sewage.

Graphical abstract: Hierarchical Co/MoNi heterostructure grown on monocrystalline CoNiMoOx nanorods with robust bifunctionality for hydrazine oxidation-assisted energy-saving hydrogen evolution

Associated articles

Supplementary files

Article information

Article type
Paper
Submitted
17 May 2023
Accepted
26 Jun 2023
First published
27 Jun 2023

J. Mater. Chem. A, 2023,11, 15749-15759

Hierarchical Co/MoNi heterostructure grown on monocrystalline CoNiMoOx nanorods with robust bifunctionality for hydrazine oxidation-assisted energy-saving hydrogen evolution

Z. Xiao, J. Wang, H. Lu, Y. Qian, Q. Zhang, A. Tang and H. Yang, J. Mater. Chem. A, 2023, 11, 15749 DOI: 10.1039/D3TA02930A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements