Issue 23, 2023

3D microstructural characterization of Ni/yttria-stabilized zirconia electrodes during long-term CO2 electrolysis

Abstract

Solid oxide electrolysis cells (SOECs) are one of the most promising energy conversion devices due to their high efficiency and gas flexibility. However, the degradation of their performance during long-term operation limits their commercialization. Among the different phenomena, the degradation of Ni/yttria-stabilized zirconia (YSZ) fuel electrodes during long-term operation is recognized as one of the main causes for the loss in cell performance. Accordingly, numerous studies have focused on investigating the degradation of Ni/YSZ electrodes during steam electrolysis, whereas only limited studies have been performed on the stability of Ni/YSZ electrodes after long-term CO2 electrolysis. In this work, the microstructure evolution of Ni/YSZ electrodes after long-term operation in a CO/CO2 atmosphere was investigated. For this purpose, Ni/YSZ-supported planar-type SOEC cells were operated at 800 °C and −1 A cm−2 or zero current with a mixture of CO2/CO (90/10) supplied to the Ni/YSZ electrode. Subsequently, the 3D electrode microstructures of pristine cermet (reference) and after 1000 h operation were observed. A significant loss of Ni in the active electrode was observed in the cell operated at −1 A cm−2 for 1000 h, along with an increased Ni fraction in the support layer. An increase in the Ni particle size (i.e., Ni coarsening) was also observed. In the cell operated with zero current for 1000 h, only Ni coarsening was observed, with no Ni migration. Our results show that Ni migration away from the electrode/electrolyte interface also occurs during long-term CO2 electrolysis to a similar extent as in steam electrolysis.

Graphical abstract: 3D microstructural characterization of Ni/yttria-stabilized zirconia electrodes during long-term CO2 electrolysis

Supplementary files

Article information

Article type
Paper
Submitted
11 Mar 2023
Accepted
18 May 2023
First published
18 May 2023

J. Mater. Chem. A, 2023,11, 12245-12257

3D microstructural characterization of Ni/yttria-stabilized zirconia electrodes during long-term CO2 electrolysis

Y. Shang, A. L. Smitshuysen, M. Yu, Y. Liu, X. Tong, P. S. Jørgensen, L. Rorato, J. Laurencin and M. Chen, J. Mater. Chem. A, 2023, 11, 12245 DOI: 10.1039/D3TA01503C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements