Issue 16, 2023

All sprayed fluorine-free membrane electrode assembly for low-platinum and low-humidity proton exchange membrane fuel cells

Abstract

Reducing the platinum catalyst loading and humidity dependence of membrane electrode assemblies (MEAs) is highly desirable for commercializing proton exchange membrane fuel cells (PEMFCs). Meanwhile, replacing the perfluorinated sulfonic-acid PEMs with fluorine-free hydrocarbon membranes can reduce manufacturing costs. We present an all spraying (AS) method to fabricate a fluorine-free hydrocarbon-based MEA (AS-MEA). Such an MEA achieves a much higher H2/O2 fuel cell performance than the conventional catalyst-coated substrate MEA (CCS-MEA). The peak power density is 1.6 W cm−2 for the AS-MEA vs. 1.2 W cm−2 for the CCS-MEA with 100% relative humidity (RH) and 0.1/0.1 L per min H2/O2 and 0.1 MPa backpressure gas feeds. More importantly, the performance superiority is particularly prominent at low RH and catalyst loading. The AS-MEA achieves a competitive peak power density of 0.6 W cm−2 at 40% RH with a low Pt loading of 0.1 mg cm−2, which is more than 3-fold that of the CCS-MEA. Equivalent-circuits-based analyses of electrochemical impedance spectroscopy show that the exceptional performance arises from the tightly integrated PEM–catalyst layer boundary, as confirmed by the cross-sectional morphological investigations. Moreover, the AS-MEA shows appreciable in situ durability during a 100 h accelerated stress test.

Graphical abstract: All sprayed fluorine-free membrane electrode assembly for low-platinum and low-humidity proton exchange membrane fuel cells

Supplementary files

Article information

Article type
Paper
Submitted
02 Feb 2023
Accepted
21 Mar 2023
First published
22 Mar 2023

J. Mater. Chem. A, 2023,11, 9002-9008

All sprayed fluorine-free membrane electrode assembly for low-platinum and low-humidity proton exchange membrane fuel cells

W. Yu, X. Yang, X. Liang, Y. Xu, X. Shen, X. Ge, L. Wu and T. Xu, J. Mater. Chem. A, 2023, 11, 9002 DOI: 10.1039/D3TA00603D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements