Issue 35, 2023

Clustering of lipids driven by integrin

Abstract

Integrin is an important transmembrane receptor protein which remodels the actin network and anchors the cell membrane towards the extracellular matrix via mechanochemical pathways. The clustering of specific lipids and lipid-anchored proteins, which is essential for a certain type of endocytosis process, is facilitated at integrin-mediated active regions. To study this, we propose a minimal exactly solvable model which includes the interplay of stochastic shuttling between integrin on and off states with the intrinsic dynamics of the membrane. We propose a two-step mechanism in which the integrin induces an aster-like arrangement in the actin network, followed by clustering of lipids in that region. We obtain an analytic expression for the deformation and local membrane velocity, and thereby the evolution of clustering mediated by a single integrin. The deformation evolves nonmonotonically and its dependence on the stochastic shuttling timescales and membrane properties is elucidated. Our estimates of the area of the deformed region and the number of lipids in it indicate strong clustering.

Graphical abstract: Clustering of lipids driven by integrin

Article information

Article type
Paper
Submitted
21 Jun 2023
Accepted
16 Aug 2023
First published
17 Aug 2023

Soft Matter, 2023,19, 6814-6824

Clustering of lipids driven by integrin

T. Singha, A. Polley and M. Barma, Soft Matter, 2023, 19, 6814 DOI: 10.1039/D3SM00809F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements