Ordered and disordered microstructures of nanoconfined conducting polymers†
Abstract
We probe the microstructural differences of conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) derivatives under geometrical nanoconfinement using a high-resolution electron microscopy (HRTEM) technique. Highly ordered domains of poly(3,4-ethylenedioxythiophene):tosylate PEDOT:Tos, which is polymerized within alumina nanochannels, are observed. These features are in contrast to those of the polymer blend poly(3,4-ethylene dioxythiophene):poly(styrenesulfonate) PEDOT:PSS inserted into the nanopores. The extent of the order–disorder parameter in terms of surface crystallization and the number of ordered domains of the long-chain polymers strongly depends on the dopant environment, processing conditions and structural confinement. Atomic force spectroscopy of individual PEDOT nanochannels highlights counterion-dependent surface adhesive factors. The molecular dynamics (MD) simulation of these systems reveals similar polymer chain configurations and the resulting morphology.