Issue 18, 2023

Mpemba effect in crystallization of polybutene-1

Abstract

The Mpemba effect and its inverse can be understood as a result of nonequilibrium thermodynamics. In polymers, changes of state are generally non-equilibrium processes. However, the Mpemba effect has been rarely reported in the crystallization of polymers. In the melt, polybutene-1 (PB-1) has the lowest critical cooling rate in polyolefins and tends to maintain its original structure and properties with thermal history. A nascent PB-1 sample was prepared by using metallocene catalysis at low temperature, and the crystallization behavior and crystalline structure of the PB-1 were characterized by DSC and WAXS. Experimentally, a clear Mpemba effect is observed not only in the crystallization of the nascent PB-1 melt in form II but also in form I obtained from the nascent PB-1 at low melting temperature. It is proposed that this is due to the differences in the chain conformational entropy in the lattice which influence conformational relaxation times. The entropy and the relaxation time can be predicted using the Adam–Gibbs equations, whereas non-equilibrium thermodynamics is required to describe the crystallization with the Mpemba effect.

Graphical abstract: Mpemba effect in crystallization of polybutene-1

Article information

Article type
Paper
Submitted
11 Mar 2023
Accepted
18 Apr 2023
First published
19 Apr 2023

Soft Matter, 2023,19, 3337-3347

Mpemba effect in crystallization of polybutene-1

J. Liu, J. Li, B. Liu, I. W. Hamley and S. Jiang, Soft Matter, 2023, 19, 3337 DOI: 10.1039/D3SM00309D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements