Issue 34, 2023

Continuum description of confluent tissues with spatial heterogeneous activity

Abstract

A continuum description is built to characterize the stationary and transient deformations of confluent tissues subject to heterogeneous activities. By defining a coarse-grained texture matrix field to represent the shape and size of cells, we derive the coarse-grained stress tensor for the vertex model. Activity in the tissue takes the form of inhomogeneous apical contractions, which can be modeled as reductions of the vertex model reference areas or perimeters representing activity in the medial and perimeter regions of the cells, respectively. For medial activity, the extra stress is just an isotropic pressure, while for perimeter activity, it also has a deviatoric component, which is aligned with the texture matrix. The predictions of the continuum description are compared with the average spatiotemporal deformations obtained in simulations of the vertex model subject to localized apical contractions, showing an excellent agreement, even if the active patch is as small as one cell. The fluctuations around the average are more prominent when the activity is in the medial region due to the lack of negative active shape feedback, which, coupled with the confluent property, increases cellular shape and size variations.

Graphical abstract: Continuum description of confluent tissues with spatial heterogeneous activity

Article information

Article type
Paper
Submitted
28 Feb 2023
Accepted
10 Aug 2023
First published
10 Aug 2023

Soft Matter, 2023,19, 6501-6512

Continuum description of confluent tissues with spatial heterogeneous activity

F. Pérez-Verdugo and R. Soto, Soft Matter, 2023, 19, 6501 DOI: 10.1039/D3SM00254C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements