Rod-climbing rheometry revisited


The rod-climbing or “Weissenberg” effect in which the free surface of a complex fluid climbs a thin rotating rod is a popular and convincing experiment demonstrating the existence of elasticity in polymeric fluids. The interface shape and steady-state climbing height depend on the rotation rate, fluid elasticity (through the presence of normal stresses), surface tension, and inertia. By solving the equations of motion in the low rotation rate limit for a second-order fluid, a mathematical relationship between the interface deflection and the fluid material functions, specifically the first and second normal stress differences, emerges. This relationship has been used in the past to measure the climbing constant, a combination of the first (Ψ1,0) and second (Ψ2,0) normal stress difference coefficients from experimental observations of rod-climbing in the low shear rate limit. However, a quantitative reconciliation of such observations with the capabilities of modern-day torsional rheometers is lacking. To this end, we combine rod-climbing experiments with both small amplitude oscillatory shear (SAOS) flow measurements and steady shear measurements of the first normal stress difference from commercial rheometers to quantify the values of both Ψ1,0 and Ψ2,0 for a series of polymer solutions. Furthermore, by retaining the oft-neglected inertial terms, we show that the “climbing constant” [small beta, Greek, circumflex] = 0.5Ψ1,0 + 2Ψ2,0 can be measured even when the fluids, in fact, experience rod descending. A climbing condition derived by considering the competition between elasticity and inertial effects accurately predicts whether a fluid will undergo rod-climbing or rod-descending. Our results suggest a more general description, “rotating rod rheometry” instead of “rod-climbing rheometry”, to be more apt and less restrictive. The analysis and observations presented in this study establish rotating rod rheometry combined with SAOS measurements as a prime candidate for measuring normal stress differences in complex fluids at low shear rates that are often below commercial rheometers' sensitivity limits.

Graphical abstract: Rod-climbing rheometry revisited

Article information

Article type
12 Feb 2023
02 May 2023
First published
09 May 2023
This article is Open Access
Creative Commons BY-NC license

Soft Matter, 2023, Advance Article

Rod-climbing rheometry revisited

R. V. More, R. Patterson, E. Pashkovski and G. H. McKinley, Soft Matter, 2023, Advance Article , DOI: 10.1039/D3SM00181D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity