Issue 33, 2023

Structural and dynamic heterogeneity in associative networks formed by artificially engineered protein polymers

Abstract

This work investigates static gel structure and cooperative multi-chain motion in associative networks using a well-defined model system composed of artificial coiled-coil proteins. The combination of small-angle and ultra-small-angle neutron scattering provides evidence for three static length scales irrespective of protein gel design which are attributed to correlations arising from the blob length, inter-junction spacing, and multi-chain density fluctuations. Self-diffusion measurements using forced Rayleigh scattering demonstrate an apparent superdiffusive regime in all gels studied, reflecting a transition between distinct “slow” and “fast” diffusive species. The interconversion between the two diffusive modes occurs on a length scale on the order of the largest correlation length observed by neutron scattering, suggesting a possible caging effect. Comparison of the self-diffusive behavior with characteristic molecular length scales and the single-sticker dissociation time inferred from tracer diffusion measurements supports the primarily single-chain mechanisms of self-diffusion as previously conceptualized. The step size of the slow mode is comparable to the root-mean-square length of the midblock strands, consistent with a single-chain walking mode rather than collective motion of multi-chain aggregates. The transition to the fast mode occurs on a timescale 10–1000 times the single-sticker dissociation time, which is consistent with the onset of single-molecule hopping. Finally, the terminal diffusivity depends exponentially on the number of stickers per chain, further suggesting that long-range diffusion occurs by molecular hopping rather than sticky Rouse motion of larger assemblies. Collectively, the results suggest that diffusion of multi-chain clusters is dominated by the single-chain pictures proposed in previous coarse-grained modeling.

Graphical abstract: Structural and dynamic heterogeneity in associative networks formed by artificially engineered protein polymers

Supplementary files

Article information

Article type
Paper
Submitted
07 Feb 2023
Accepted
16 Jul 2023
First published
10 Aug 2023

Soft Matter, 2023,19, 6314-6328

Structural and dynamic heterogeneity in associative networks formed by artificially engineered protein polymers

A. Rao and B. D. Olsen, Soft Matter, 2023, 19, 6314 DOI: 10.1039/D3SM00150D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements