Issue 7, 2023

Is there a granular potential?

Abstract

Granular materials, such as sand or grain, exhibit many structural and dynamic characteristics similar to those observed in molecular systems, despite temperature playing no role in their properties. This has led to an effort to develop a statistical mechanics for granular materials that has focused on establishing an equivalent to the microcanonical ensemble and a temperature-like thermodynamic variable. Here, we expand on these ideas by introducing a granular potential into the Edwards ensemble, as an analogue to the chemical potential, and explore its properties using a simple model of a granular system. A simple kinetic Monte Carlo simulation of the model shows the effect of mass transport leading to equilibrium and how this is connected to the redistribution of volume in the system. An exact analytical treatment of the model shows that the compactivity and the ratio of the granular potential to the compactivity determine the equilibrium between two open systems that are able to exchange volume and particles, and that mass moves from high to low values of this ratio. Analysis of the granular potential shows that adding a particle to the system increases the entropy at high compactivity, but decreases the entropy at low compactivity. Finally, we demonstrate the use of a small system thermodynamics method for the measurement of granular potential differences.

Graphical abstract: Is there a granular potential?

Article information

Article type
Paper
Submitted
14 Dec 2022
Accepted
18 Jan 2023
First published
30 Jan 2023

Soft Matter, 2023,19, 1373-1383

Is there a granular potential?

J. M. Gramlich, M. Zarif and R. K. Bowles, Soft Matter, 2023, 19, 1373 DOI: 10.1039/D2SM01636B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements