Issue 3, 2023

Explicit demonstration of geometric frustration in chiral liquid crystals

Abstract

Many solid materials and liquid crystals exhibit geometric frustration, meaning that they have an ideal local structure that cannot fill up space. For that reason, the global phase must be a compromise between the ideal local structure and geometric constraints. As an explicit example of geometric frustration, we consider a chiral liquid crystal confined in a long cylinder with free boundaries. When the radius of the tube is sufficiently small, the director field forms a double-twist configuration, which is the ideal local structure. However, when the radius becomes larger (compared with the natural twist of the liquid crystal), the double-twist structure cannot fill space, and hence the director field must transform into some other chiral structure that can fill space. This space-filling structure may be either (1) a cholesteric phase with single twist, or (2) a set of double-twist regions separated by a disclination, which can be regarded as the beginning of a blue phase. We investigate these structures using theory and simulations, and show how the relative free energies depend on the system size, the natural twist, and the disclination energy. As another example, we also study a cholesteric liquid crystal confined between two infinite parallel plates with free boundaries.

Graphical abstract: Explicit demonstration of geometric frustration in chiral liquid crystals

Article information

Article type
Paper
Submitted
28 Oct 2022
Accepted
14 Dec 2022
First published
15 Dec 2022

Soft Matter, 2023,19, 519-529

Author version available

Explicit demonstration of geometric frustration in chiral liquid crystals

C. Long and J. V. Selinger, Soft Matter, 2023, 19, 519 DOI: 10.1039/D2SM01420C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements