Issue 35, 2023

Microfluidic tapered aspirators for mechanical characterization of microgel beads

Abstract

In this study, we report a microfluidic approach for the measurement of mechanical properties of spherical microgel beads. This technique is analogous to tapered micropipette aspiration, while harnessing the benefits of microfluidics. We fabricate alginate-based microbeads and determine their mechanical properties using the microfluidic tapered aspirators. Individual microgel beads are aspirated and trapped in tapered channels, the deformed equilibrium shape is measured, and a stress balance is used to determine the Young's modulus. We investigate the effect of surface coating, taper angle, and bead diameter and find that the measured modulus is largely insensitive to these parameters. We show that the bead modulus increases with alginate concentration and follows a trend similar to that of the modulus measured using standard uniaxial compression. The critical pressure to squeeze out the beads from the tapered aspirators was found to depend on both the modulus and the bead diameter. Finally, we demonstrate how temporal changes in bead moduli due to enzymatic degradation of the hydrogel could be quantitatively determined. The results from this study highlight that the microfluidic tapered aspirators are a useful tool to measure hydrogel bead mechanics and have the potential to characterize dynamic changes in mechanical properties.

Graphical abstract: Microfluidic tapered aspirators for mechanical characterization of microgel beads

Article information

Article type
Paper
Submitted
12 Oct 2022
Accepted
19 Jun 2023
First published
26 Jun 2023

Soft Matter, 2023,19, 6641-6651

Microfluidic tapered aspirators for mechanical characterization of microgel beads

M. M. Uddin and S. A. Vanapalli, Soft Matter, 2023, 19, 6641 DOI: 10.1039/D2SM01357F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements