Volume 2, 2023

All-in-one terahertz taste sensor: integrated electronic and bioelectronic tongues

Abstract

Taste sensors, also known as electronic tongues or bioelectronic tongues, are designed to evaluate food and beverages, as well as for medical diagnostics. These devices mimic the ability of the human tongue to detect and identify different tastes in liquid samples, such as sweet, sour, salty, bitter, and umami. In this study, a novel all-in-one terahertz taste sensor was proposed, which differs from traditional electrochemical approaches. This sensor utilizes terahertz technology for imaging and sensing chemical reactions on the terahertz semiconductor emitter surface. The surface can be functionalized with ion-sensitive membranes, proteins, DNA aptamers, and organic receptors, enabling the detection of various substances, such as solution pH, physiological ions, sugars, toxic chemicals, drugs, and explosives. Terahertz taste sensors offer several advantages, including being label-free, high sensitivity and selectivity, rapid response, minimal sample consumption, and the ability to detect non-charged chemical substances. By integrating multiple receptors or sensing materials on a single chip, the all-in-one terahertz taste sensor has significant potential for future taste substance detection, nutrition evaluation, metabolite and drug monitoring, and biomarker sensing.

Graphical abstract: All-in-one terahertz taste sensor: integrated electronic and bioelectronic tongues

Article information

Article type
Perspective
Submitted
10 Feb 2023
Accepted
11 Mar 2023
First published
13 Mar 2023
This article is Open Access
Creative Commons BY-NC license

Sens. Diagn., 2023,2, 620-626

All-in-one terahertz taste sensor: integrated electronic and bioelectronic tongues

J. Wang, K. Sakai and T. Kiwa, Sens. Diagn., 2023, 2, 620 DOI: 10.1039/D3SD00038A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements