Issue 39, 2023

Nitrene transfer from a sterically confined copper nitrenoid dipyrrin complex

Abstract

Despite the myriad Cu-catalyzed nitrene transfer methodologies to form new C–N bonds (e.g., amination, aziridination), the critical reaction intermediates have largely eluded direct characterization due to their inherent reactivity. Herein, we report the synthesis of dipyrrin-supported Cu nitrenoid adducts, investigate their spectroscopic features, and probe their nitrene transfer chemistry through detailed mechanistic analyses. Treatment of the dipyrrin CuI complexes with substituted organoazides affords terminally ligated organoazide adducts with minimal activation of the azide unit as evidenced by vibrational spectroscopy and single crystal X-ray diffraction. The Cu nitrenoid, with an electronic structure most consistent with a triplet nitrene adduct of CuI, is accessed following geometric rearrangement of the azide adduct from κ1-N terminal ligation to κ1-N internal ligation with subsequent expulsion of N2. For perfluorinated arylazides, stoichiometric and catalytic C–H amination and aziridination was observed. Mechanistic analysis employing substrate competition reveals an enthalpically-controlled, electrophilic nitrene transfer for primary and secondary C–H bonds. Kinetic analyses for catalytic amination using tetrahydrofuran as a model substrate reveal pseudo-first order kinetics under relevant amination conditions with a first-order dependence on both Cu and organoazide. Activation parameters determined from Eyring analysis (ΔH = 9.2(2) kcal mol−1, ΔS = −42(2) cal mol−1 K−1, ΔG298K = 21.7(2) kcal mol−1) and parallel kinetic isotope effect measurements (1.10(2)) are consistent with rate-limiting Cu nitrenoid formation, followed by a proposed stepwise hydrogen-atom abstraction and rapid radical recombination to furnish the resulting C–N bond. The proposed mechanism and experimental analysis are further corroborated by density functional theory calculations. Multiconfigurational calculations provide insight into the electronic structure of the catalytically relevant Cu nitrene intermediates. The findings presented herein will assist in the development of future methodology for Cu-mediated C–N bond forming catalysis.

Graphical abstract: Nitrene transfer from a sterically confined copper nitrenoid dipyrrin complex

Supplementary files

Article information

Article type
Edge Article
Submitted
14 Jul 2023
Accepted
04 Sep 2023
First published
26 Sep 2023
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY license

Chem. Sci., 2023,14, 10847-10860

Nitrene transfer from a sterically confined copper nitrenoid dipyrrin complex

K. M. Carsch, S. C. North, I. M. DiMucci, A. Iliescu, P. Vojáčková, T. Khazanov, S. Zheng, T. R. Cundari, K. M. Lancaster and T. A. Betley, Chem. Sci., 2023, 14, 10847 DOI: 10.1039/D3SC03641C

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements