Issue 37, 2023

Versatile synthesis of nano-icosapods via cation exchange for effective photocatalytic conversion of biomass-relevant alcohols

Abstract

Branched metal chalcogenide nanostructures with well-defined composition and configuration are appealing photocatalysts for solar-driven organic transformations. However, precise design and controlled synthesis of such nanostructures still remain a great challenge. Herein, we report the construction of a variety of highly symmetrical metal sulfides and heterostructured icosapods based on them, in which twenty branches were radially grown in spatially ordered arrangement, with a high degree of structure homogeneity. Impressively, the as-obtained CdS–PdxS icosapods manifest a significantly improved photocatalytic activity for the selective oxidation of biomass-relevant alcohols into corresponding aldehydes coupled with H2 evolution under visible-light irradiation (>420 nm), and the apparent quantum yield of the benzyl alcohol reforming can be achieved as high as 31.4% at 420 nm. The photoreforming process over the CdS–PdxS icosapods is found to be directly triggered by the photogenerated electrons and holes without participation of radicals. The enhanced photocatalytic performance is attributed to the fast charge separation and abundant active sites originating from the well-defined configuration and spatial organization of the components in the branched heterostructures.

Graphical abstract: Versatile synthesis of nano-icosapods via cation exchange for effective photocatalytic conversion of biomass-relevant alcohols

Supplementary files

Article information

Article type
Edge Article
Submitted
16 May 2023
Accepted
31 Aug 2023
First published
01 Sep 2023
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2023,14, 10167-10175

Versatile synthesis of nano-icosapods via cation exchange for effective photocatalytic conversion of biomass-relevant alcohols

D. Xu, L. Zhai, Z. Mu, C. Tao, F. Ge, H. Zhang, M. Ding, F. Cheng and X. Wu, Chem. Sci., 2023, 14, 10167 DOI: 10.1039/D3SC02493H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements