Issue 34, 2023

Mechanochemically assisted morphing of shape shifting polymers

Abstract

Morphing in creatures has inspired various synthetic polymer materials that are capable of shape shifting. The morphing of polymers generally relies on stimuli-active (typically heat and light active) units that fix the shape after a mechanical load-based shape programming. Herein, we report a strategy that uses a mechanochemically active 2,2′-bis(2-phenylindan-1,3-dione) (BPID) mechanophore as a switching unit for mechanochemical morphing. The mechanical load on the polymer triggers the dissociation of the BPID moiety into stable 2-phenylindan-1,3-dione (PID) radicals, whose subsequent spontaneous dimerization regenerates BPID and fixes the temporary shapes that can be effectively recovered to the permanent shapes by heating. A greater extent of BPID activation, through a higher BPID content or mechanical load, leads to higher mechanochemical shape fixity. By contrast, a relatively mechanochemically less active hexaarylbiimidazole (HABI) mechanophore shows a lower fixing efficiency when subjected to the same programing conditions. Another control system without a mechanophore shows a low fixing efficiency comparable to the HABI system. Additionally, the introduction of the BPID moiety also manifests remarkable mechanochromic behavior during the shape programing process, offering a visualizable indicator for the pre-evaluation of morphing efficiency. Unlike conventional mechanical mechanisms that simultaneously induce morphing, such as strain-induced plastic deformation or crystallization, our mechanochemical method allows for shape programming after the mechanical treatment. Our concept has potential for the design of mechanochemically programmable and mechanoresponsive shape shifting polymers.

Graphical abstract: Mechanochemically assisted morphing of shape shifting polymers

Supplementary files

Article information

Article type
Edge Article
Submitted
10 May 2023
Accepted
03 Aug 2023
First published
10 Aug 2023
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2023,14, 9207-9212

Mechanochemically assisted morphing of shape shifting polymers

R. Tang, W. Gao, Y. Jia, K. Wang, B. K. Datta, W. Zheng, H. Zhang, Y. Xu, Y. Lin and W. Weng, Chem. Sci., 2023, 14, 9207 DOI: 10.1039/D3SC02404K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements