Issue 23, 2023

Precise peripheral design enables propeller-like squaraine dye with highly sensitive and wide-range piezochromism

Abstract

Piezochromic fluorescent (PCF) materials that feature high sensitivity and wide-range switching are attractive in intelligent optoelectronic applications but their fabrication remains a significant challenge. Here we present a propeller-like squaraine dye SQ-NMe2 decorated with four peripheral dimethylamines acting as electron donors and spatial obstacles. This precise peripheral design is expected to loosen the molecular packing pattern and facilitate more substantial intramolecular charge transfer (ICT) switching caused by conformational planarization under mechanical stimuli. As such, the pristine SQ-NMe2 microcrystal exhibits significant fluorescence changes from yellow (λem = 554 nm) to orange (λem = 590 nm) upon slight mechanical grinding and further to deep red (λem = 648 nm) upon heavy mechanical grinding. Single-crystal X-ray diffraction structural analysis of two SQ-NMe2 polymorphs provides direct evidence to illustrate the design concept of such a piezochromic molecule. The piezochromic behavior of SQ-NMe2 microcrystals is sensitive, high-contrast, and easily reversible, enabling cryptographic applications.

Graphical abstract: Precise peripheral design enables propeller-like squaraine dye with highly sensitive and wide-range piezochromism

Supplementary files

Article information

Article type
Edge Article
Submitted
04 Apr 2023
Accepted
17 May 2023
First published
18 May 2023
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2023,14, 6348-6354

Precise peripheral design enables propeller-like squaraine dye with highly sensitive and wide-range piezochromism

W. Guo, M. Wang, L. Si, Y. Wang, G. Xia and H. Wang, Chem. Sci., 2023, 14, 6348 DOI: 10.1039/D3SC01730C

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements