Issue 22, 2023

Laves phase Ir2Sm intermetallic nanoparticles as a highly active electrocatalyst for acidic oxygen evolution reaction

Abstract

Rare earth (RE) intermetallic nanoparticles (NPs) are significant for fundamental explorations and promising for practical applications in electrocatalysis. However, they are difficult to synthesize because of the unusually low reduction potential and extremely high oxygen affinity of RE metal–oxygen bonds. Herein, intermetallic Ir2Sm NPs were firstly synthesized on graphene as a superior acidic oxygen evolution reaction (OER) catalyst. It was verified that intermetallic Ir2Sm is a new phase belonging to the C15 cubic MgCu2 type in the Laves phase family. Meanwhile, intermetallic Ir2Sm NPs achieved a mass activity of 1.24 A mgIr−1 at 1.53 V and stability of 120 h at 10 mA cm−2 in 0.5 M H2SO4 electrolyte, which corresponds to a 5.6-fold and 12-fold enhancement relative to Ir NPs. Experimental results together with density functional theory (DFT) calculations show that in the structurally ordered intermetallic Ir2Sm NPs, the alloying of Sm with Ir atoms modulates the electronic nature of Ir, thereby reducing the binding energy of the oxygen-based intermediate, resulting in faster kinetics and enhanced OER activity. This study provides a new perspective for the rational design and practical application of high-performance RE alloy catalysts.

Graphical abstract: Laves phase Ir2Sm intermetallic nanoparticles as a highly active electrocatalyst for acidic oxygen evolution reaction

Supplementary files

Article information

Article type
Edge Article
Submitted
25 Feb 2023
Accepted
15 Apr 2023
First published
02 May 2023
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2023,14, 5887-5893

Laves phase Ir2Sm intermetallic nanoparticles as a highly active electrocatalyst for acidic oxygen evolution reaction

S. Zhang, L. Yin, Q. Li, S. Wang, W. Wang and Y. Du, Chem. Sci., 2023, 14, 5887 DOI: 10.1039/D3SC01052J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements