Issue 19, 2023

Synthesis of biolabile thioalkyl-protected phosphates from an easily accessible phosphotriester precursor

Abstract

Robust methods for the synthesis of mixed phosphotriesters are essential to accelerate the development of novel phosphate-containing bioactive molecules. To enable efficient cellular uptake, phosphate groups are commonly masked with biolabile protecting groups, such as S-acyl-2-thioethyl (SATE) esters, that are removed once the molecule is inside the cell. Typically, bis-SATE-protected phosphates are synthesised through phosphoramidite chemistry. This approach, however, suffers from issues with hazardous reagents and can give unreliable yields, especially when applied to the synthesis of sugar-1-phosphate derivatives as tools for metabolic oligosaccharide engineering. Here, we report the development of an alternative approach that gives access to bis-SATE phosphotriesters in two steps from an easy to synthesise tri(2-bromoethyl)phosphotriester precursor. We demonstrate the viability of this strategy using glucose as a model substrate, onto which a bis-SATE-protected phosphate is introduced either at the anomeric position or at C6. We show compability with various protecting groups and further explore the scope and limitations of the methodology on different substrates, including N-acetylhexosamine and amino acid derivatives. The new approach facilitates the synthesis of bis-SATE-protected phosphoprobes and prodrugs and provides a platform that can boost further studies aimed at exploring the unique potential of sugar phosphates as research tools.

Graphical abstract: Synthesis of biolabile thioalkyl-protected phosphates from an easily accessible phosphotriester precursor

Supplementary files

Article information

Article type
Edge Article
Submitted
08 Feb 2023
Accepted
19 Apr 2023
First published
19 Apr 2023
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2023,14, 5062-5068

Synthesis of biolabile thioalkyl-protected phosphates from an easily accessible phosphotriester precursor

L. D. Murphy, K. E. Huxley, A. Wilding, C. Robinson, Q. P. O. Foucart and L. I. Willems, Chem. Sci., 2023, 14, 5062 DOI: 10.1039/D3SC00693J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements