Issue 11, 2023

Smart down/upconversion nanomachines integrated with “AND” logic computation and enzyme-free amplification for NIR-II fluorescence-assisted precise and enhanced photodynamic therapy

Abstract

Upconversion nanoparticles enable indirect activation of photodynamic therapy (PDT) using near-infrared (NIR) light, providing an excellent alternative for treating deep tumors. However, conventional NIR light-triggered PDT systems suffered from low spatiotemporal accuracy and restricted therapeutic efficiency in vivo. In this work, DNA logic circuits were functionally modified on down/upconversion nanoparticles (D/UCNPs) to construct smart down/upconversion nanomachines (D/UCNMs) for NIR light-triggered PDT toward target tumors. Upon dual inputs of tumor-associated GSH and TK1 mRNA, DNA logic circuits perform “AND” logic computation and initiate the toehold-mediated strand displacement reaction. Meanwhile, the quenched upconversion fluorescence was recovered and then the approaching photosensitizers were activated, leading to in situ output of singlet oxygen (1O2) for precise and enhanced PDT. Importantly, the biodistribution of the D/UCNMs in vivo could be visualized by second near-infrared (NIR-II) fluorescence imaging via the downconversion luminance of D/UCNPs, which further contributed to performing precise PDT. This work provides new insights into the development of precise and highly efficient PDT systems.

Graphical abstract: Smart down/upconversion nanomachines integrated with “AND” logic computation and enzyme-free amplification for NIR-II fluorescence-assisted precise and enhanced photodynamic therapy

Supplementary files

Article information

Article type
Edge Article
Submitted
01 Dec 2022
Accepted
20 Feb 2023
First published
21 Feb 2023
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2023,14, 3070-3075

Smart down/upconversion nanomachines integrated with “AND” logic computation and enzyme-free amplification for NIR-II fluorescence-assisted precise and enhanced photodynamic therapy

L. Pang, X. Tang, L. Yao, L. Zhou, S. Hu, S. Zhao and L. Zhang, Chem. Sci., 2023, 14, 3070 DOI: 10.1039/D2SC06601G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements