Issue 4, 2023

Continuous-flow Fe-zeolite-catalyzed temperature-directed synthesis of bioactive tetraketones and xanthenes using epoxides and cyclic-1,3-diketones via a Meinwald rearrangement

Abstract

An environmentally benign approach for bioactive tetraketones using epoxides and cyclic-1,3-diketones in the presence of Fe-zeolite as a catalyst via a Meinwald rearrangement was developed under batch and continuous flow modes. Further increasing the temperature to 180 °C, these tetraketones underwent a cyclization reaction in the presence of catalytic Fe-zeolite to afford xanthene derivatives. Moreover, this Fe-zeolite catalyst was also used for the reaction of aldehyde and cyclic 1,3-diketone, affording the tetraketone in a high yield. Advantageously, the present approach enables gram-scale synthesis in batches as well as in continuous flow. This approach can sustainably generate many bioactive tetraketones and xanthenes as it does not produce any waste. The Fe-zeolite used in this process is easy to synthesize in the multigram scale, inexpensive, easy to recover, and recyclable.

Graphical abstract: Continuous-flow Fe-zeolite-catalyzed temperature-directed synthesis of bioactive tetraketones and xanthenes using epoxides and cyclic-1,3-diketones via a Meinwald rearrangement

Supplementary files

Article information

Article type
Paper
Submitted
26 Oct 2022
Accepted
15 Dec 2022
First published
16 Dec 2022

React. Chem. Eng., 2023,8, 855-862

Continuous-flow Fe-zeolite-catalyzed temperature-directed synthesis of bioactive tetraketones and xanthenes using epoxides and cyclic-1,3-diketones via a Meinwald rearrangement

S. Mondal, A. M. Pandey and B. Gnanaprakasam, React. Chem. Eng., 2023, 8, 855 DOI: 10.1039/D2RE00452F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements