Issue 48, 2023, Issue in Progress

Pt nanoparticles-decorated molybdenum nitrides for efficient hydrogen evolution reaction

Abstract

Exploring low cost and high efficiency catalysts for hydrogen production from electrochemical water splitting is preferable and remains a significant challenge. As an alternative to Pt-based catalysts, molybdenum nitrides have attracted more attention for their hydrogen evolution reaction (HER). However, their performance is restricted due to the strong bonding of Mo–H. Herein, molybdenum nitrides with Pt-doping are fabricated to enhance the catalytic activity for HER in acidic solution. As expected, Pt (5 wt%)–MoNx delivers a low overpotential of 47 mV at a current density of 10 mA cm−2 with a high exchange current density (j0 = 0.98 mA cm−2). The superior performance is attributed to the modified electronic structure of Mo with Pt incorporation.

Graphical abstract: Pt nanoparticles-decorated molybdenum nitrides for efficient hydrogen evolution reaction

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
12 Oct 2023
Accepted
10 Nov 2023
First published
21 Nov 2023
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2023,13, 34057-34063

Pt nanoparticles-decorated molybdenum nitrides for efficient hydrogen evolution reaction

J. Wang and X. Zhang, RSC Adv., 2023, 13, 34057 DOI: 10.1039/D3RA06954K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements