Issue 47, 2023

Modulated synthesis of cesium phosphomolybdate encapsulated in hierarchical porous UiO-66 for catalysing alkene epoxidation

Abstract

The hybrid composite of cesium phosphomolybdate (CsPM) encapsulated in hierarchical porous UiO-66 (HP-UiO-66) was synthesized using a modulated solvothermal method. A variety of characterization results demonstrated that the pore size distribution of CsPM@HP-UiO-66 is broader than traditional microporous CsPM@UiO-66 and cesium phosphomolybdate clusters are uniformly distributed in the octahedral cages of HP-UiO-66. The catalytic properties of the hybrid composite were investigated in alkene epoxidation reaction with tert-butyl hydroperoxide (t-BuOOH) as an oxidant. CsPM@HP-UiO-66 showed much higher catalytic activity for the alkene epoxidation reaction in comparison with the reference catalysts and could be easily reused by centrifugation and recycled for at least ten runs without significant loss in catalytic activity. The superior catalytic activity and stability of the hybrid composite CsPM@HP-UiO-66 should be mainly attributed to the hierarchical pores in the support HP-UiO-66 promoting the diffusion of alkene molecules, the uniform distribution of highly active CsPM clusters in the octahedral cages of HP-UiO-66, the introduction of cesium cations to form the insoluble cesium phosphomolybdate and the strong metal-support interactions (SMSI) between the CsPM clusters and the HP-UiO-66 framework.

Graphical abstract: Modulated synthesis of cesium phosphomolybdate encapsulated in hierarchical porous UiO-66 for catalysing alkene epoxidation

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
04 Oct 2023
Accepted
08 Nov 2023
First published
16 Nov 2023
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2023,13, 33533-33540

Modulated synthesis of cesium phosphomolybdate encapsulated in hierarchical porous UiO-66 for catalysing alkene epoxidation

D. Hu, S. Miao, P. Zhang, S. Wu, Y. He and Q. Meng, RSC Adv., 2023, 13, 33533 DOI: 10.1039/D3RA06749A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements