Issue 49, 2023, Issue in Progress

Solid polymer electrolytes reinforced with porous polypropylene separators for all-solid-state supercapacitors

Abstract

Solid polymer electrolytes (SPEs) encounter the challenge of balancing high ionic conductivity and mechanical strength. Ionic liquids, which are among the contenders to be used in high-performance supercapacitors, have difficulty infiltrating commercial polyolefin separators for combined applications. In this study, a novel SPE involving uniform infiltration in the micropores of commercial polyolefin separators with polyethylene oxide (PEO), lithium salt, and different proportions of added ionic liquid was developed. The composite membranes combining ionic liquid-filled SPE with polypropylene (PP) microporous separators simultaneously achieve excellent mechanical strength and high-ionic conductivity. The low wettability of pure ionic liquids and commercial polyolefin-based separators is addressed. The 70 wt% IL-filled solid electrolyte composite membrane (PLI(70)@PP) exhibits a high ionic conductivity (2.9 × 10−3 S cm−1), low resistance at the electrolyte–electrode interface and excellent mechanical strength (128 MPa) at 25 °C. The all-solid-state supercapacitor using PLI(70)@PP exhibits a specific capacitance of 158 F g−1 at 0.1 A g−1 and stable cycle performance. The proposed method can be performed via high-volume roll-to-roll processing to obtain high-performance all-solid-state supercapacitors (ASSCs) for engineering applications.

Graphical abstract: Solid polymer electrolytes reinforced with porous polypropylene separators for all-solid-state supercapacitors

Supplementary files

Article information

Article type
Paper
Submitted
29 Aug 2023
Accepted
21 Nov 2023
First published
27 Nov 2023
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2023,13, 34652-34659

Solid polymer electrolytes reinforced with porous polypropylene separators for all-solid-state supercapacitors

W. Liu, Z. Li, F. Pan, Q. He and Q. Zhang, RSC Adv., 2023, 13, 34652 DOI: 10.1039/D3RA05899A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements