Issue 40, 2023, Issue in Progress

Seeking the most stable isomer of azahomocubanes

Abstract

This study examines the stability and protonation properties of four potential azahomocubanes. Through high-level ab initio computations, we find that 9-azahomocubane is the most stable isomer, closely followed by 5-azahomocubane, 1-azahomocubane, and 2-azahomocubane. However, understanding the stability of the systems with a nitrogen atom incorporated into a highly constrained polycyclic environment extends beyond mere bond angles or hybridization considerations. Strain energy analysis reveals that azahomocubanes experience less strain compared to their carbon congeners. An exploration of multiple solvents shows that their impact on relative energies and geometries is negligible. On the other hand, among the four isomers, 2-azahomocubane exhibits the highest tendency for protonation. Basicity, as assessed through the minimum electrostatic potential, correlates well with protonation affinities.

Graphical abstract: Seeking the most stable isomer of azahomocubanes

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
28 Jul 2023
Accepted
01 Sep 2023
First published
18 Sep 2023
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2023,13, 27672-27675

Seeking the most stable isomer of azahomocubanes

M. A. Fernández-Herrera, J. Barroso-Flores and G. Merino, RSC Adv., 2023, 13, 27672 DOI: 10.1039/D3RA05117J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements