Issue 35, 2023

Effect of granulation on chlorine-release behavior during municipal solid waste incineration

Abstract

The preparation of refuse-derived fuel (RDF) is an effective and simple means of rural municipal solid waste utilization. The release of chlorine during RDF combustion is important as it causes high-temperature corrosion and pollutants emission such as HCl, dioxins, etc. In this paper, constant-temperature and increasing-temperature combustion experiments were carried out using an electrically heating furnace to analyse the effects of granulation (pressure and additives) on the release of chlorine in particles. During the constant-temperature combustion below 800 °C, only organic chlorine was released from the RDF. The increase of granulation pressure from 1 MPa to 10 MPa did not affect the total amount of chlorine release, but delayed the organic chlorine release by increasing the gas diffusion resistance. During the constant-temperature combustion above 900 °C, inorganic chlorine was released as well. The increase of granulation pressure enhanced the inorganic chlorine release significantly by promoting the reactants contact. During the increasing-temperature combustion, the increase of granulation pressure delayed the organic chlorine release as well but inhibited the inorganic chlorine release. This was mainly attributed to the slow temperature rise to 900 °C, during which the inherent calcium in the RDF reacted with silicon and aluminium, resulting in less reactants for an inorganic chlorine release reaction. Three calcium-based additives were used to inhibit chlorine release. CaCO3 showed no dechlorination effect, and CaO showed better dechlorination effect than Ca(OH)2. For the constant-temperature combustion at 900 °C, the addition of CaO with a Ca/Cl ratio of 2 achieved a dechlorination efficiency of over 90%, with little influence from the granulation pressure. For the increasing-temperature combustion, the granulation pressure had a significant influence on CaO dechlorination effectiveness. Only at a granulation pressure as high as 10 MPa, did the addition of CaO with the Ca/Cl ratio of 2.5 achieve a dechlorination efficiency of 95%.

Graphical abstract: Effect of granulation on chlorine-release behavior during municipal solid waste incineration

Article information

Article type
Paper
Submitted
11 Jul 2023
Accepted
14 Aug 2023
First published
21 Aug 2023
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2023,13, 24854-24864

Effect of granulation on chlorine-release behavior during municipal solid waste incineration

X. Xie, W. Wu, J. Fu, L. Di, C. Bu, G. Xu, J. Meng, G. Piao and X. Wang, RSC Adv., 2023, 13, 24854 DOI: 10.1039/D3RA04615J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements