Issue 36, 2023

Experimental and optimization study on the effects of diethyl ether addition to waste plastic oil on diesel engine characteristics

Abstract

This study investigates the impact of adding diethyl ether (DEE) to pyrolysis oil derived from mixed plastic waste on engine performance, combustion characteristics, and emissions. The blending of different DEE concentrations (5%, 10%, and 15% by volume) with waste plastic oil (WPO) was analyzed. Experiments were conducted on a four-cylinder diesel engine, varying engine loads while maintaining engine speed. The results indicate that WPO mainly comprises middle-distillate hydrocarbons (52.58% C13–C18 and 26.15% C19–C23). While WPO had lower specific gravity, density, and flash point, it met diesel fuel specifications for kinematic viscosity and cetane index. The addition of DEE led to decreased properties in all blended fuels, except for the cetane index. Engine performance declined with WPO–DEE blends at low engine loads but improved at high engine loads with minimal variation as DEE concentration increased. DEE addition resulted in a shorter ignition delay and earlier combustion, although increasing DEE concentration did not further advance combustion. NOx emissions significantly decreased with DEE addition, while HC and CO emissions remained unaffected at high engine loads. To optimize the process, the non-dominated sorting genetic algorithm II (NSGA-II) with generalized regression neural networks (GRNNs) was employed as a surrogate multi-objective function. The GRNNs model demonstrated excellent performance, achieving high R2 values of 0.952 and 0.918, low RMSE values of 0.659 and 0.310, and MdAPE values of 2.675% and 5.098% for brake thermal efficiency (BTE) and NOx, respectively. The NSGA-II algorithm with GRNNs model proved successful in predicting the multi-objective function in the optimization process, even with limited data. The Pareto frontier analysis revealed an optimal DEE percentage of approximately 10% to 14% for maximum BTE and minimum NOx, with engine loads distributed around 30, 40, and 100 N m.

Graphical abstract: Experimental and optimization study on the effects of diethyl ether addition to waste plastic oil on diesel engine characteristics

Article information

Article type
Paper
Submitted
05 Jul 2023
Accepted
14 Aug 2023
First published
24 Aug 2023
This article is Open Access
Creative Commons BY license

RSC Adv., 2023,13, 25464-25482

Experimental and optimization study on the effects of diethyl ether addition to waste plastic oil on diesel engine characteristics

A. Wiangkham, N. Klinkaew, P. Aengchuan, P. Liplap, A. Ariyarit and E. Sukjit, RSC Adv., 2023, 13, 25464 DOI: 10.1039/D3RA04489K

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements