Issue 31, 2023, Issue in Progress

Sequence rules for gold-binding peptides

Abstract

Metal-binding peptides play a central role in bionanotechnology, wherein they are responsible for directing growth and influencing the resulting properties of inorganic nanomaterials. One of the key advantages of using peptides to create nanomaterials is their versatility, wherein subtle changes in the sequence can have a dramatic effect on the structure and properties of the nanomaterial. However, precisely knowing which position and which amino acid should be modified within a given sequence to enhance a specific property can be a daunting challenge owing to combinatorial complexity. In this study, classification based on association rules was performed using 860 gold-binding peptides. Using a minimum support threshold of 0.035 and confidence of 0.9, 30 rules with confidence and lift values greater than 0.9 and 1, respectively, were extracted that can differentiate high-binding from low-binding peptides. The test performance of these rules for categorizing the peptides was found to be satisfactory, as characterized by accuracy = 0.942, F1 = 0.941, MCC = 0.884. What stands out from the extracted rules are the importance of tryptophan and arginine residues in differentiating peptides with high binding affinity from those with low affinity. In addition, the association rules revealed that positions 2 and 4 within a decapeptide are frequently involved in the rules, thus suggesting their importance in influencing peptide binding affinity to AuNPs. Collectively, this study identified sequence rules that may be used to design peptides with high binding affinity.

Graphical abstract: Sequence rules for gold-binding peptides

Article information

Article type
Paper
Submitted
26 Jun 2023
Accepted
06 Jul 2023
First published
12 Jul 2023
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2023,13, 21146-21152

Sequence rules for gold-binding peptides

J. I. B. Janairo, RSC Adv., 2023, 13, 21146 DOI: 10.1039/D3RA04269C

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements