Issue 30, 2023, Issue in Progress

First-principles investigation on multi-magnesium sulfide and magnesium sulfide clusters in magnesium-sulfide batteries

Abstract

Because of the abundance of magnesium and sulfur and their low cost, the development of magnesium sulfur batteries is very promising. In particular, the battery performance of nanoscale (MgS)n clusters is much better than that of bulk sized MgS. However, the structures, stability, and properties of MgxSy and (MgS)n clusters, which are very important to improve the performance of Mg–S batteries, are still unexplored. Herein, the most stable structures of MgxSy (x = 1–8, y = 1–8) and (MgS)n (n = 1–10) are reliably determined using the structure search method and density functional theory to calculate. According to calculation results, MgS3 and Mg6S8 may not exist in the actual charging and discharging products of magnesium sulfide batteries. The (MgS)n (n ≥ 5) clusters exhibit intriguing cage-like structures, which are favorable for eliminating dangling bonds and enhancing structural stability. Compared to the MgS monomer, each sulfur atom in the clusters is coordinated with more magnesium atoms, thus lengthening the Mg–S bond length and decreasing the Mg–S bond activation energy. Notably, with the increase of dielectric constant of electrolyte solvent, compared to the DME (ε = 7.2), THF (ε = 7.6) and C2H4Cl2 (ε = 10.0), MgxSy and (MgS)n clusters are most stable in the environment of C3H6O (ε = 20.7). It can delay the transformation of magnesium polysulfide to the final product MgS, which is conducive to improving the performance of Mg–S batteries. The predicted characteristic peaks of infrared and Raman spectra provide useful information for in situ experimental investigation. Our work represents a significant step towards understanding (MgS)n clusters and improving the performance of Mg–S batteries.

Graphical abstract: First-principles investigation on multi-magnesium sulfide and magnesium sulfide clusters in magnesium-sulfide batteries

Article information

Article type
Paper
Submitted
12 May 2023
Accepted
05 Jul 2023
First published
11 Jul 2023
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2023,13, 20926-20933

First-principles investigation on multi-magnesium sulfide and magnesium sulfide clusters in magnesium-sulfide batteries

X. Jiang, J. Wu, P. Zhang, L. Jiang, S. Lu, X. Zhao and Z. Yin, RSC Adv., 2023, 13, 20926 DOI: 10.1039/D3RA03165A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements