Issue 28, 2023, Issue in Progress

Design, synthesis, and biological evaluation of morpholinopyrimidine derivatives as anti-inflammatory agents

Abstract

Here, we outline the synthesis of a few 2-methoxy-6-((4-(6-morpholinopyrimidin-4-yl)piperazin-1-yl)(phenyl)methyl)phenol derivatives and assess their anti-inflammatory activity in macrophage cells that have been stimulated by LPS. Among these newly synthesized morpholinopyrimidine derivatives, 2-methoxy-6-((4-methoxyphenyl)(4-(6-morpholinopyrimidin-4-yl)piperazin-1-yl)methyl)phenol (V4) and 2-((4-fluorophenyl)(4-(6-morpholinopyrimidin-4-yl)piperazin-1-yl)methyl)-6-methoxyphenol (V8) are two of the most active compounds which can inhibit the production of NO at non-cytotoxic concentrations. Our findings also showed that compounds V4 and V8 dramatically reduced iNOS and cyclooxygenase mRNA expression (COX-2) in LPS-stimulated RAW 264.7 macrophage cells; western blot analysis showed that the test compounds decreased the amount of iNOS and COX-2 protein expression, hence inhibiting the inflammatory response. We find through molecular docking studies that the chemicals had a strong affinity for the iNOS and COX-2 active sites and formed hydrophobic interactions with them. Therefore, use of these compounds could be suggested as a novel therapeutic strategy for inflammation-associated disorders.

Graphical abstract: Design, synthesis, and biological evaluation of morpholinopyrimidine derivatives as anti-inflammatory agents

Supplementary files

Article information

Article type
Paper
Submitted
23 Mar 2023
Accepted
01 Jun 2023
First published
27 Jun 2023
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2023,13, 19119-19129

Design, synthesis, and biological evaluation of morpholinopyrimidine derivatives as anti-inflammatory agents

S. Fatima, A. Zaki, H. Madhav, B. S. Khatoon, A. Rahman, M. W. Manhas, N. Hoda and S. M. Ali, RSC Adv., 2023, 13, 19119 DOI: 10.1039/D3RA01893H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements