Copper-doped perylene diimide supramolecules combined with TiO2 for efficient photoactivity†
Abstract
Designing organic–inorganic hybrid semiconductors is an effective strategy for improving the performance of the photocatalyst under visible light irradiation. In this experiment, we firstly introduced Cu into perylenediimide supramolecules (PDIsm) to prepare the novel Cu-dopped PDIsm (CuPDIsm) with one-dimensional structure and then incorporated CuPDIsm with TiO2 to improve the photocatalytic performance. The introduction of Cu in PDIsm increases both the visible light adsorption and specific surface areas. Cu2+ coordination link between adjacent perylenediimide (PDI) moleculars and H-type π–π stacking of the aromatic core greatly accelerate the electron transfer in CuPDIsm system. Moreover, the photo-induced electrons generated by CuPDIsm migrate to TiO2 nanoparticles through hydrogen bond and electronic coupling at the TiO2/CuPDIsm heterojunction, which further accelerates the electron transfer and the separation efficiency of the charge carriers. So, the TiO2/CuPDIsm composites exhibit excellent photodegradation activity under visible light irradiation, reaching the maximum values of 89.87 and 97.26% toward tetracycline and methylene blue, respectively. This study provides new prospects for the development of metal-dopping organic systems and the construction of inorganic–organic heterojunctions, which can effectively enhance the electron transfer and improve the photocatalytic performance.