Issue 23, 2023

High-efficiency removal of tetracycline from water by electrolysis-assisted NZVI: mechanism of electron transfer and redox of iron

Abstract

A low-cost, stable and non-precious metal catalyst for efficient degradation of tetracycline (TC), one of the most widely used antibiotics, has been developed. We report the facile fabrication of an electrolysis-assisted nano zerovalent iron system (E-NZVI) that achieved TC removal efficiency of 97.3% with the initial concentration of 30 mg L−1 at an applied voltage of 4 V, which was 6.3 times higher than the NZVI system without an applied voltage. The improvement caused by electrolysis was mainly attributed to the stimulation of corrosion of NZVI, which accelerated the release of Fe2+. And Fe3+ in the E-NZVI system could receive electrons to reduce to Fe2+, which facilitated the conversion of ineffective ions to effective ions with reducing ability. Moreover, electrolysis assisted to expand the pH range of the E-NZVI system for TC removal. The uniformly dispersed NZVI in the electrolyte facilitated the collection and secondary contamination could be prevented with the easy recycling and regeneration of the spent catalyst. In addition, scavenger experiments revealed that the reducing ability of NZVI was accelerated in the presence of electrolysis, rather than oxidation. TEM-EDS mapping, XRD and XPS analyses indicated that electrolytic effects could also delay the passivation of NZVI after a long run. This is mainly due to the increased electromigration, implying that the corrosion products of iron (iron hydroxides and oxides) are not formed mainly near or on the surface of NZVI. The electrolysis-assisted NZVI shows excellent removal efficiency of TC and is a potential water treatment method for the degradation of antibiotic contaminants.

Graphical abstract: High-efficiency removal of tetracycline from water by electrolysis-assisted NZVI: mechanism of electron transfer and redox of iron

Article information

Article type
Paper
Submitted
12 Feb 2023
Accepted
11 Apr 2023
First published
26 May 2023
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2023,13, 15881-15891

High-efficiency removal of tetracycline from water by electrolysis-assisted NZVI: mechanism of electron transfer and redox of iron

X. Wang, X. Wang, I. Lynch and J. Ma, RSC Adv., 2023, 13, 15881 DOI: 10.1039/D3RA00954H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements