Issue 20, 2023, Issue in Progress

Characterization and study of high conductivity antimony-doped tin oxide thin films grown by mist chemical vapor deposition

Abstract

Antimony doped tin oxide thin films are grown at atmospheric pressure using a home-built mist chemical vapor deposition system, which is an environmental-friendly technique with low energy consumption. For obtaining high quality Sb:SnOx films, different solutions are used to support the film fabrication process. The role of each component in supporting solution is also preliminarily analyzed and studied. In this work, the growth rate, density, transmittance, hall effect, conductivity, surface morphology, crystallinity, component and chemical states of Sb:SnOx films are investigated. Sb:SnOx films prepared at 400 °C using a mixing solution of H2O, HNO3 and HCl show a low electrical resistivity of 6.58 × 10−4 Ω cm, high carrier concentration of 3.26 × 1021 cm−3, high transmittance of 90%, and wide optical band gas of 4.22 eV. X-ray photoelectron spectroscopy analyses disclose that the samples with good properties have high [Sn4+]/[Sn2+] and [O–Sn4+]/[O–Sn2+] ratios. Moreover, it is discovered that supporting solutions also affect the CBM–VBM level and Fermi level in the band diagram of thin films. These experimental results confirm that Sb:SnOx films grown using mist CVD are a mixture of SnO2 and SnO. The sufficient supply of oxygen from supporting solutions leads to the stronger combination of cations and oxygen, and the combination of cations and impurities disappear, which is one of the reasons for obtaining high conductivity Sb:SnOx films.

Graphical abstract: Characterization and study of high conductivity antimony-doped tin oxide thin films grown by mist chemical vapor deposition

Article information

Article type
Paper
Submitted
17 Jan 2023
Accepted
19 Apr 2023
First published
02 May 2023
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2023,13, 13456-13462

Characterization and study of high conductivity antimony-doped tin oxide thin films grown by mist chemical vapor deposition

L. Liu, M. Ueda and T. Kawaharamura, RSC Adv., 2023, 13, 13456 DOI: 10.1039/D3RA00359K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements